A characterization of all elliptic algebro-geometric solutions of the AKNS hierarchy

نویسندگان

  • FRITZ GESZTESY
  • RUDI WEIKARD
چکیده

Here ~9(x):p(x; wl,w3) denotes the elliptic Weierstrass function with fundamental periods 2wl and 2w3 (Im(w3/Wl)#0). In the special case where Wl is real and w3 is purely imaginary, the potential q(x) in (1.1) is real-valued and Ince's striking result [51], in modern spectral-theoretic terminology, yields that the spectrum of the unique self-adjoint operator associated with the differential expression L2=d2/dx 2 +q(x) in L2(R) exhibits finitely many bands (and gaps, respectively), that is,

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Characterization of All Elliptic Solutions of the Akns Hierarchy

An explicit characterization of all elliptic algebro-geometric solutions of the AKNS hierarchy is presented. More precisely, we show that a pair of elliptic functions (p, q) is an algebro-geometric AKNS potential, that is, a solution of some equation of the stationary AKNS hierarchy, if and only if the associated linear differential system JΨ +QΨ = EΨ, where J = (

متن کامل

Elliptic Algebro-geometric Solutions of the Kdv and Akns Hierarchies – an Analytic Approach

We provide an overview of elliptic algebro-geometric solutions of the KdV and AKNS hierarchies, with special emphasis on Floquet theoretic and spectral theoretic methods. Our treatment includes an effective characterization of all stationary elliptic KdV and AKNS solutions based on a theory developed by Hermite and Picard.

متن کامل

Elliptic Algebro-geometric Solutions of the Kdv and Akns Hierarchies – an Analytic Approach Fritz Gesztesy and Rudi Weikard

We provide an overview of elliptic algebro-geometric solutions of the KdV and AKNS hierarchies, with special emphasis on Floquet theoretic and spectral theoretic methods. Our treatment includes an effective characterization of all stationary elliptic KdV and AKNS solutions based on a theory developed by Hermite and Picard.

متن کامل

An Alternative Approach to Algebro-geometric Solutions of the Akns Hierarchy

We develop an alternative systematic approach to the AKNS hierarchy based on elementary algebraic methods. In particular, we recursively construct Lax pairs for the entire AKNS hierarchy by introducing a fundamental polynomial formalism and establish the basic algebro-geometric setting including associated BurchnallChaundy curves, Baker-Akhiezer functions, trace formulas, Dubrovin-type equation...

متن کامل

A Combined Sine-gordon and Modified Korteweg{de Vries Hierarchy and Its Algebro-geometric Solutions

We derive a zero-curvature formalism for a combined sine-Gordon (sG) and modi-ed Korteweg{de Vries (mKdV) equation which yields a local sGmKdV hierarchy. In complete analogy to other completely integrable hierarchies of soliton equations, such as the KdV, AKNS, and Toda hierarchies, the sGmKdV hierarchy is recursively constructed by means of a fundamental polynomial formalism involving a spectr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006